
iCC 2003 CAN in Automation

04-7

Configuration Guideline for CANopen Networks

Martin Rostan, Beckhoff

Unlike most other fieldbus systems, CANopen provides many degrees of freedom to
configure the communication behaviour of the network. Product manuals rarely
describe simple paths to achieve the optimal configuration. Network analysis tools
generate a lot of data that has to be interpreted by CANopen experts. Most CANopen
users have difficulties to configure their network smartly and quickly and end up with
sub-optimal setups.

The paper first briefly explains the various configuration possibilities and shows the
optimisation targets, depending on the application requirements. The influence of the
parameters on reaction time, determinism and bus load is shown. Then a
configuration guideline for CANopen networks is introduced, which allows one to
optimize the network step by step using simple indicators.

Process Data Objects

In many fieldbus systems the entire
process image is continuously transferred
- usually in a more or less cyclic manner.
CANopen is not l imited to this
communication principle, since the multi-
master bus access protocol allows CAN to
offer other methods. The process data in
CANopen is divided into segments with a
maximum of 8 bytes. These segments are
known as process data objects (PDOs).
The PDOs each correspond to a CAN
telegram, whose specific CAN identifier is
used to allocate them and to determine
their priority. The PDOs are named from
the point of view of the node: receive
PDOs (RxPDOs) are received by the node
and – in case of an I/O device - contain
output data, while transmit PDOs
(TxPDOs) are sent by the I/O device and
contain input data.

Mapping

Typically there are several RxPDO and
TxPDOs available for the process data
exchange. The default allocation of input
or output data to these PDOs is called
default mapping and is defined in the
device profiles. It is recorded in the
mapping tables in the object directory of
the device. These mapping tables create
the cross-reference between the

application data in the object directory
(e.g. digital and analogue input data) and
the sequence in the process data objects.
The first location in the mapping table
(sub-index 0) contains the number of
mapped objects that are listed after it. The
mapping tables are located in the object
directory at index 0x1600ff for the
RxPDOs and at 0x1A00ff for the TxPDOs.

The default mapping of process data
objects is usually sufficient to meet the
application requirements. For special
types of application the mapping can
nevertheless be altered: many CANopen
devices support variable mapping, in
which the application objects can be freely
allocated to the PDOs.

Communication parameters

The PDOs can be given different
communication parameters according to
the requirements of the application. Like
all parameters they can be found in the
object dictionary of the device. The
parameters are located in the object
directory from index 0x1400ff (RxPDOs)
and index 0x1800ff (TxPDO). There are
entries for up 512 RxPDOs and 512
TxPDOs. For each available PDO the
communication parameter entry must be
present, but write access can be
restricted.

iCC 2003 CAN in Automation

04-8

Each entry is a data structure of
up to five parameters, which are
now explained in more detail:

PDO Identifier

The most important communi-
cation parameter in a PDO is the
CAN identifier (also know as the
communication object identifier, or
COB-ID). It is used to identify the
data, and determines their priority
for bus access. For each CAN
data telegram there may only be
one sender node (producer),
although all messages sent in the
CAN broadcast procedure can be received
by any number of nodes (consumers).
Thus a node can make its input
information available to a number of bus
devices at the same time - even without
transferring them through a logical bus
master.

Default Identifier

For the first four PDOs (PDO1…PDO4)
CANopen provides default identifiers
depending on the node address, but all
other PDOs must have identifiers assigned
to them. In the system of default
identifiers, all the nodes (here: slaves)
communicate with one central station (the
master), since slave nodes do not listen by
default to the send identifier of other slave
nodes: If the consumer-producer model of
CANopen PDOs is to be used for direct
data exchange between nodes (without a
master), the distribution of identifiers must
be appropriately adapted, so that the
TxPDO identifier of the producer agrees
with the RxPDO identifier of the consumer:
This procedure is known as PDO linking. It
permits, for example, easy construction of
electronic drives in which several slave
axes simultaneously listen to the actual
value in the master axis TxPDO.

PDOs can be activated or deactivated by
changing the most significant bit of the
identifier parameter. Depending on the
implementation, modifying the identifier
may be limited to the pre-operational state
of the device or even be not supported at
all.

PDO Transmission Types

CANopen offers a number of possible
ways to transmit process data (see fig. 1).

Event driven:

The “event” is the alteration of an input
value, the data being transmitted
immediately after this change. The event-
driven flow can make optimal use of the
bus bandwidth, since instead of the whole
process image it is only the changes in it
that are transmitted. A short reaction time
is achieved at the same time, since when
an input value changes it is not necessary
to wait for the next interrogation from a
master.

As from CANopen Version 4 it is possible
to combine the event driven type of
communication with a cyclic update. Even
if an event has not just occurred, event
driven TxPDOs are sent after the event
timer has elapsed. If an event does occur,
the event timer is reset. For RxPDOs the
event timer is used as a watchdog in order
to monitor the arrival of event driven
PDOs. If a PDO does not arrive within a
set period of time, the bus node adopts the
error state.

Polled

The PDOs can also be polled by data
request telegrams (remote frames). In this
way it is possible to get the input process
image of event-driven inputs onto the bus,
even when the inputs have not changed,

Fig 1.: PDO Transmission principles

iCC 2003 CAN in Automation

04-9

for instance by a monitoring or diagnostic
device brought into the network while it is
running. The time needed to react on a
remote frames and send the requested
PDO depends on the CAN controller used:
FullCAN Controllers with fully integrated
frame f i l ter ing typical ly respond
immediately to remote frames and send
whatever is in the corresponding data
buffer. Here the local application program
(or firmware) has to make sure that the
data is updated frequently, and one cannot
tell how old the data is. CAN Controllers
with simplified frame filtering (BasicCAN)
typically forward the remote request to the
application firmware, which then compiles
the PDO with actual data. This takes
longer, but ensures “fresh” data.

As this device behaviour normally is not
transparent to the user and as there are
CAN controllers that do not support
remote frames at all, polling is not a
preferable PDO communication method.

Synchronised

It is not only for drive applications that it is
worth while to synchronise the sampling of
the input information and the setting the
outputs. For this purpose CANopen
provides the SYNC object, a CAN
telegram of high priority but containing no
user data, whose reception is used by the
synchronised nodes as a trigger for
reading the inputs or for setting the
outputs (fig. 2).

The “PDO transmission type” parameter
specifies how the transmission of the PDO
is triggered, or how received PDOs are
handled:

Acyclic Synchronous

PDOs of transmission type 0 function
synchronously, but not cyclically. An
RxPDO is only evaluated after the next
SYNC telegram has been received. In this
way, for instance, axis groups can be
given new target positions one after
another, but these positions only become
valid at the next SYNC - without the need
to be constantly outputting reference
points. A device whose TxPDO is
configured for transmission type 0
acquires its input data when it receives the
SYNC (synchronous process image) and
then transmits it if the data correspond to
an event (such as a change in input)
having occurred. Transmission type 0 thus
combines transmission for reasons that

are event driven with a time for
transmission (and, as far as
poss ib le , sampl ing) and
processing given by the reception
of "SYNC".

Cyclic Synchronous

In transmission types 1-240 the
PDO is transmitted cyclically: after
every ”n-th” SYNC (n = 1...240).
Since transmission types can be
combined on a device as well as
in the network, it is possible, for
example, for a fast cycle to be
agreed for digital inputs (n = 1),

whereas the data for analog inputs is
transmitted in a slower cycle (e.g. n = 10).
RxPDOs do not generally distinguish
between transmission types 0...240: a
PDO that has been received is set to valid
when the next SYNC is received. The
cycle time (SYNC rate) can be monitored
(object 0x1006), so that if the SYNC fails
the device reacts in accordance with the
definition in the device profile, and
switches, for example, its outputs into the
fault state.

Fig 2.: CANopen Sync Mechanism

iCC 2003 CAN in Automation

04-10

Inhibit time

When selecting the type of event-driven
PDO communication, consideration must
be given to the fact that in certain
circumstances many events occur at the
same time, resulting in corresponding
delays before a relatively low priority PDO
can be transmitted. The possibility of a
continuously changing input with a high
PDO priority monopolising the bus (the
“babbling idiot”) must also be prevented.
For this reason, event-driven mode is
switched off by default for analogue inputs,
in accordance with the CANopen
specification, and has to be activated by
means of object 0x6423. The ”inhibit time”
parameter (fig. 3) can be used to
implement a ”transmit filter” that does not
increase the reaction time for relatively
new input alterations, but is active for
changes that fol low immediately
afterwards.

Fig 3.: Inhibit Time

The inhibit time (transmit delay time)
specifies the minimum length of time that
must be allowed to elapse between the
transmission of two of the same
telegrams. If the inhibit time is used, the
maximum bus loading can be determined,
so that the worst case latency can then be
found.

PDO Parameterisation

Even though the majority of CANopen
networks operate satisfactorily with the
default settings, i.e. with the minimum of
configuration effort, it is wise at least to
check whether the existing bus loading is
reasonable: 70-80% bus loading may be
acceptable for a network operating purely
in cyclic synchronous modes, but for a
network with event-driven traffic this value

would generally be too high, as there is
hardly any bandwidth available for
additional events.

Application Requirements

The communication of the process data
must be optimised in the light of
application requirements which are likely
to be to some extent in conflict. These
include

• Little work on parameterisation -
useable default values are optimal

• Guaranteed reaction time for specific
events

• Cycle time for control loops closed over
the bus

• Safety margins for bus malfunctions
(enough bandwidth for the repetition of
messages)

• Maximum baud rate - depends on the
maximum bus length

• Desired communication paths - who is
speaking with whom

In order to determine the requirements of
the application the cycle time of the control
task(s) should be considered. For each
device or signal type it should be defined if
the reaction time or the cycle time is
crucial.

Typical is for

• Controlled axis: cycle time and
synchronicity

• Positioned axis: reaction time,
simultaneous start

• Digital I/O: reaction time

• Analogue I/O: cycle time

Furthermore, the switch-off time in case of
communication failure has to be
considered: how long may it take to detect
such a situation? This time determines the
cycle time (and life time factor) of the node
supervision (Guarding/Heartbeat).

A important factor for the layout of the
network often turns out to be the available
bus bandwidth (bus load).

iCC 2003 CAN in Automation

04-11

Select the Baudrate

We generally begin by choosing the
highest baud rate that the bus will permit.
It should be borne in mind that serial bus
systems are always more sensitive to
interference at higher baud rates, so the
better rule is "just as fast as needed". 1000
kbit/s are not usually necessary, and only
to be unreservedly recommended on
networks within a control cabinet where
there is no electrical isolation between the
bus nodes. Experience also tends to show
that estimates of the length of bus cable
laid are often over-optimistic - the length
actually laid tends to be longer.

Determine the Communication Type

Once the baud rate has been chosen it is
appropriate to specify the PDO
communication type(s). These have
different advantages and disadvantages:

Cyclic synchronous communication
provides an accurately predictable bus
loading, and therefore a defined time
behaviour - you could say that the
standard case is the worst case. It is easy
to configure: The SYNC rate parameter
sets the bus loading globally. The process
images are synchronised: Inputs are read
at the same time, output data is set valid
simultaneously, although the quality of the
synchronisation depends on the
implementation.

Only few CANopen master cards are
capable of synchronising the CANopen
bus system with the cycles of the
application program (PLC or NC) – the
Beckhoff cards provide this feature. The
guaranteed reaction time under cyclic
synchronous communication is always at
least as long as the cycle time, and the
bus bandwidth is not exploited optimally,
since "old" data, i.e. data that has not
changed, is continuously transmitted. It is
however possible to optimise the network
through the selection of different SYNC
multiples (transmission types 1...240), so
that data that changes slowly is
transmitted less often than, for instance,
time-critical inputs.

It must, however, be borne in mind that
input states that last for a time that is

shorter than the cycle time will not
necessarily be communicated. If it is
necessary for such conditions to be
registered, the associated PDOs for
asynchronous communication should be
provided.

Event-driven asynchronous communi-
cation is optimal from the point of view of
reaction time and the exploitation of bus
bandwidth - it can be described as "pure
CAN". Your choice must, however, also
take account of the fact that it is not
impossible for a large number of events to
occur simultaneously, leading to
corresponding delays before a PDO with a
relatively low priority can be sent. Proper
network planning therefore necessitates a
worst-case analysis.

Through the use of, for instance inhibit
time it is also necessary to prevent a
constantly changing input with a high PDO
priority from blocking the bus. As
mentioned before, this is the reason that
event driving is switched off by default for
analogue inputs, and must be turned on
specifically. Time windows for the transmit
PDOs can be set using event timers: the
telegram is not sent again before the
inhibit time has elapsed, and not later than
the time required for the event timer to
complete (see fig. 4)

Fig 4: TxPDO Time Window

It is also possible to combine the two main
PDO principles. It can, for instance, be
helpful to exchange the command and
actual values of an axis controller
synchronously, while limit switches, or
motor temperatures with limit values are
monitored with event-driven PDOs. This
combines the advantages of the two
principles: synchronicity for the axis
communication and short reaction times
for limit switches. In spite of being event-
driven, the distributed limit value
monitoring avoids a constant addition to

iCC 2003 CAN in Automation

04-12

the bus load from the analogue
temperature value. In this example it can
also be of value to deliberately manipulate
the identifier allocation, in order to
optimise bus access by means of priority
allocation: the highest priority is given to
the PDO with the limit switch data, and the
lowest to that with the temperature values.
Optimisation of bus access latency time
through modification of the identifier
allocation is not, however, normally
required. On the other hand the identifiers
must be al tered i f "masterless"
communication is to be made possible
(PDO linking). In this example it would be
possible for one RxPDO for each axis to
be allocated the same identifier as the limit
switch TxPDO, so that alterations of this
important input value can be received
without delay.

Determining the Bus Load

It is always worth determining the bus
load. But what bus load values are
"permitted", or indeed sensible? It is first
necessary to distinguish a short burst of
telegrams in which a number of CAN
messages follow one another immediately
- a temporary 100% bus loading. This is
only a problem if the sequence of receive
interrupts that it caused at the CAN nodes
can not be handled. This would constitute
a data overflow (or "CAN queue overrun").
This can occur at very high baud rates (>
500 kbit/s) at nodes with software
telegram filtering and relatively slow or
heavily loaded microcontrollers if, for
instance, a series of remote frames (which
do not contain data bytes, and are
therefore very short) follow each other
closely on the bus (at 1 Mbit/s this can
generate an interrupt every 40 µs; for
example, an NMT master might transmit
all its guarding requests in an unbroken
sequence). This can be avoided through
skilled implementation, and the user
should be able to assume that the device
suppliers have taken the necessary
precautions. A burst condition is entirely
normal immediately after the SYNC
telegram, for instance: triggered by the
SYNC, all the nodes that are operating
synchronously try to send their data at
almost the same time. A large number of
arbitration processes take place, and the

telegrams are sorted in order of priority for
transmission on the bus. This is not
usually critical, since these telegrams do
contain some data bytes, and the
telegrams trigger a sequence of receive
interrupts at the CAN nodes which is
indeed rapid, but is nevertheless
manageable.

The Bus load most often refers to the
value averaged over several primary
cycles, that is the mean value over 100-
500 ms. CAN, and therefore CANopen, is
indeed capable of managing a bus loading
of close to 100% over long periods, but
this implies that no bandwidth is available
for any repetitions that may be
necessitated by interference, for
asynchronous er ro r messages,
parameterisation and so on. Clearly, the
dominant type of communication will have
a large influence on the appropriate level
of bus loading: a network with entirely
cyclic synchronous operation is always in
any case near to the "worst case" state,
and can therefore be operated with values
in the 70-80% range. The figure is very
hard to state for an entirely event-driven
network: an estimate must be made of
how many events additional to the current
state of the system might occur, and of
how long the resulting burst might last - in
other words, for how long the lowest
priority message will be delayed. If this
value is acceptable to the application, then
the current bus loading is acceptable. As a
rule of thumb it can usually be assumed
that an event-driven network running with
a base loading of 30-40% has enough
reserve for worst-case scenarios, but this
assumption does not obviate the need for
a careful analysis if delays could have
critical results for the plant. The Beckhoff
FC510x PC cards indicate the bus loading
via the System Manager (see Fig. 5).

Fig 5.: Bus load Indication

This variable can also be processed in the
PLC, or can be displayed in the
visualisation system.

iCC 2003 CAN in Automation

04-13

These considerations lead to the following
configuration guideline and procedure for
the configuration of a CANopen network:

1. Start with the following default settings:

• digital I/Os: event driven

• analogue I/Os: cyclic (synchronous)

• Servo drives: cyclic synchronous

• Variable speed drives: command
valued acyclic synchronous, actual
values cyclic synchronous

• Bus cycle time (sync rate) = task cycle
time

2. Now make a check on the bus load

In more than 80% of the applications the
configuration is now finished

3. If the bus load is very low (< 30%):

• Reduce sync rate (= bus cycle time)

• Consider to communicate digital I/O
synchronously, if cycle time is shorter
than minimal state time of inputs

• Possibly reduce baud rate

4. If the bus load is very high (>70%)

• Check sync rate (bus cycle time) –
possibly it can be increased

• Consider increasing sync multiple of
analogue I/O

• If possible: increase baud rate

• Maybe it is necessary to introduce a
second CANopen network

In any case it is important to measure and
check the bus load!

Martin Rostan
Beckhoff
Ostendstr. 196, D- 90482 Nürnberg
+49 911 54056-11
+49 911 54056-29
m.rostan@beckhoff.com
www.beckhoff.com

